Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
2.
Front Immunol ; 15: 1350593, 2024.
Article in English | MEDLINE | ID: mdl-38433842

ABSTRACT

Introduction: Therapeutic vaccination in tuberculosis (TB) represents a Host Directed Therapy strategy which enhances immune responses in order to improve clinical outcomes and shorten TB treatment. Previously, we have shown that the subunit H56:IC31 vaccine induced both humoral and cellular immune responses when administered to TB patients adjunctive to standard TB treatment (TBCOX2 study, NCT02503839). Here we present the longitudinal whole blood gene expression patterns in H56:IC31 vaccinated TB patients compared to controls receiving standard TB treatment only. Methods: The H56:IC31 group (N=11) and Control group (N=7) underwent first-line TB treatment for 182 days. The H56:IC31 group received 5 micrograms of the H56:IC31 vaccine (Statens Serum Institut; SSI, Valneva Austria GmbH) intramuscularly at day 84 and day 140. Total RNA was extracted from whole blood samples collected in PAXgene tubes on days 0, 84, 98, 140, 154, 182 and 238. The expression level of 183 immune-related genes was measured by high-throughput microfluidic qPCR (Biomark HD system, Standard BioTools). Results: The targeted gene expression profiling unveiled the upregulation of modules such as interferon (IFN) signalling genes, pattern recognition receptors and small nucleotide guanosine triphosphate (GTP)-ases in the vaccinated group compared to controls two weeks after administration of the first H56:IC31 vaccine. Additionally, the longitudinal analysis of the Adolescent Cohort Study-Correlation of Risk (ACS-COR) signature showed a progressive downregulation in both study arms towards the end of TB treatment, in congruence with reported treatment responses and clinical improvements. Still, two months after the end of TB treatment, vaccinated patients, and especially those developing both cellular and humoral vaccine responses, showed a lower expression of the ACS-COR genes compared to controls. Discussion: Our data report gene expression patterns following H56:IC31 vaccination which might be interpreted as a lower risk of relapse in therapeutically vaccinated patients. Further studies are needed to conclude if these gene expression patterns could be used as prognostic biosignatures for therapeutic TB vaccine responses.


Subject(s)
Tuberculosis Vaccines , Tuberculosis , Adolescent , Humans , Oligodeoxyribonucleotides , Cohort Studies , Tuberculosis Vaccines/therapeutic use , Tuberculosis/prevention & control , RNA
3.
J Intern Med ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539241

ABSTRACT

BACKGROUND: The complement system, an upstream recognition system of innate immunity, is activated upon SARS-CoV-2 infection. To gain a deeper understanding of the extent and duration of this activation, we investigated complement activation profiles during the acute phase of COVID-19, its persistence post-recovery and dynamic changes in relation to disease severity. METHODS: Serial blood samples were obtained from two cohorts of hospitalized COVID-19 patients (n = 457). Systemic complement activation products reflecting classical/lectin (C4d), alternative (C3bBbP), common (C3bc) and terminal pathway (TCC and C5a) were measured during hospitalization (admission, days 3-5 and days 7-10), at 3 months and after 1 year. Levels of activation and temporal profiles during hospitalization were related to disease severity defined as respiratory failure (PO2/FiO2 ratio <26.6 kPa) and/or admission to intensive care unit, 60-day total mortality and pulmonary pathology after 3 months. FINDINGS: During hospitalization, TCC, C4d, C3bc, C3bBbP and C5a were significantly elevated compared to healthy controls. Severely ill patients had significantly higher levels of TCC and C4d (p < 0.001), compared to patients with moderate COVID-19. Escalated levels of TCC and C4d during hospitalization were associated with a higher risk of 60-day mortality (p < 0.001), and C4d levels were additionally associated with chest CT changes at 3 months (p < 0.001). At 3 months and 1 year, we observed consistently elevated levels of most complement activation products compared to controls. CONCLUSION: Hospitalized COVID-19 patients display prominent and long-lasting systemic complement activation. Optimal targeting of the system may be achieved through enhanced risk stratification and closer monitoring of in-hospital changes of complement activation products.

5.
Res Pract Thromb Haemost ; 8(1): 102289, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38292350

ABSTRACT

Background: Several studies have examined parameters of increased thrombogenicity in COVID-19, but studies examining their association with long-term outcome and potential effects of antiviral agents in hospitalized patients with COVID-19 are scarce. Objectives: To evaluate plasma levels of hemostatic proteins during hospitalization in relation to disease severity, treatment modalities, and persistent pulmonary pathology after 3 months. Methods: In 165 patients with COVID-19 recruited into the NOR-Solidarity trial (NCT04321616) and randomized to treatment with hydroxychloroquine, remdesivir, or standard of care, we analyzed plasma levels of hemostatic proteins during the first 10 days of hospitalization (n = 160) and at 3 months of follow-up (n = 100) by enzyme immunoassay. Results: Our main findings were as follows: (i) tissue plasminogen activator (tPA) and tissue factor pathway inhibitor (TFPI) were increased in patients with severe disease (ie, the combined endpoint of respiratory failure [Po2-to-FiO2 ratio, <26.6 kPa] or need for treatment at an intensive care unit) during hospitalization. Compared to patients without severe disease, tPA levels were a median of 42% (P < .001), 29% (P = .002), and 36% (P = .015) higher at baseline, 3 to 5 days, and 7 to 10 days, respectively. For TFPI, median levels were 37% (P = .003), 25% (P < .001), and 10% (P = .13) higher in patients with severe disease at these time points, respectively. No changes in thrombin-antithrombin complex; alpha 2-antiplasmin; a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; or antithrombin were observed in relation to severe disease. (ii) Patients treated with remdesivir had lower levels of TFPI than those in patients treated with standard of care alone. (iii) TFPI levels during hospitalization, but not at 3 months of follow-up, were higher in those with persistent pathology on chest computed tomography imaging 3 months after hospital admission than in those without such pathology. No consistent changes in thrombin-antithrombin complex, alpha 2-antiplasmin, ADAMTS-13, tPA, or antithrombin were observed in relation to pulmonary pathology at 3 months of follow-up. Conclusion: TFPI and tPA are associated with severe disease in hospitalized patients with COVID-19. For TFPI, high levels measured during the first 10 days of hospitalization were also associated with persistent pulmonary pathology even 3 months after hospital admittance.

6.
J Infect Dis ; 229(3): 888-897, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-37721470

ABSTRACT

BACKGROUND: Current tuberculosis treatment regimens could be improved by adjunct host-directed therapies (HDT) targeting host responses. We investigated the antimycobacterial capacity of macrophages from patients with tuberculosis in a phase 1/2 randomized clinical trial (TBCOX2) of the cyclooxygenase-2 inhibitor etoricoxib. METHODS: Peripheral blood mononuclear cells from 15 patients with tuberculosis treated with adjunctive COX-2i and 18 controls (standard therapy) were collected on day 56 after treatment initiation. The ex vivo capacity of macrophages to control mycobacterial infection was assessed by challenge with Mycobacterium avium, using an in vitro culture model. Macrophage inflammatory responses were analyzed by gene expression signatures, and concentrations of cytokines were analyzed in supernatants by multiplex. RESULTS: Macrophages from patients receiving adjunctive COX-2i treatment had higher M. avium loads than controls after 6 days, suggesting an impaired capacity to control mycobacterial infection compared to macrophages from the control group. Macrophages from the COX-2i group had lower gene expression of TNF, IL-1B, CCL4, CXCL9, and CXCL10 and lowered production of cytokines IFN-ß and S100A8/A9 than controls. CONCLUSIONS: Our data suggest potential unfavorable effects with impaired macrophage capacity to control mycobacterial growth in patients with tuberculosis receiving COX-2i treatment. Larger clinical trials are required to analyze the safety of COX-2i as HDT in patients with tuberculosis. CLINICAL TRIALS REGISTRATION: NCT02503839.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Cytokines , Etoricoxib/pharmacology , Leukocytes, Mononuclear , Macrophages/microbiology , Tuberculosis/microbiology
7.
Tidsskr Nor Laegeforen ; 143(11)2023 08 15.
Article in English, Norwegian | MEDLINE | ID: mdl-37589359

ABSTRACT

BACKGROUND: In Norway, treatment with COVID-19 convalescent plasma has been given through the NORPLASMA project. The treatment was initially offered to critically ill patients after an individual assessment, but from December 2020, the indication was limited to critically ill, immunocompromised patients. In this article we describe clinical characteristics, comorbidity and mortality in patients who received convalescent plasma in these two periods. MATERIAL AND METHOD: From 22 April 2020 to 30 March 2022, a total of 79 patients were included in the observational studies NORPLASMA MONITOR and the Norwegian SARS-CoV-2 study. The patients had received a total of 193 units of convalescent plasma at 15 Norwegian hospitals/nursing homes; 62 in South-Eastern Norway Regional Health Authority, 8 in Western Norway Regional Health Authority and 9 in Central Norway Regional Health Authority. Information on immune status, comorbidity and course of infection was retrieved from the patient records after informed written consent was obtained. RESULTS: Of 79 patients with a median age of 65 years (interquartile range 51-⁠73) who were treated with convalescent plasma, 31 (39 %) died during hospitalisation. A total of 59 patients were immunocompromised, and of these, 20 died in hospital compared to 11 of 20 who were assumed to be immunocompetent. Median number of comorbidities was 2 (interquartile range 1-4). The patients received a median of two plasma units (min.-max. 1-21). Two of the patients developed mild allergic skin reactions. INTERPRETATION: Convalescent plasma was well tolerated by patients with COVID-19. Immunocompromised patients may have benefitted from the treatment, with lower mortality than for those assumed to be immunocompetent.


Subject(s)
COVID-19 , Dermatitis, Atopic , Aged , Humans , COVID-19/therapy , COVID-19 Serotherapy , Critical Illness/therapy , SARS-CoV-2 , Middle Aged
9.
Crit Care ; 27(1): 69, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36814280

ABSTRACT

BACKGROUND: Gut microbiota alterations have been reported in hospitalized COVID-19 patients, with reduced alpha diversity and altered microbiota composition related to respiratory failure. However, data regarding gut microbiota and mortality are scarce. METHODS: Rectal swabs for gut microbiota analyses were collected within 48 h after hospital admission (baseline; n = 123) and three-month post-admission (n = 50) in a subset of patients included in the Norwegian SARS-CoV2 cohort study. Samples were analysed by sequencing the 16S rRNA gene. Gut microbiota diversity and composition at baseline were assessed in relation to need for intensive care unit (ICU) admission during hospitalization. The primary objective was to investigate whether the ICU-related gut microbiota was associated with 60-day mortality. RESULTS: Gut microbiota diversity (Shannon index) at baseline was lower in COVID-19 patients requiring ICU admission during hospitalization than in those managed in general wards. A dysbiosis index representing a balance of enriched and reduced taxa in ICU compared with ward patients, including decreased abundance of butyrate-producing microbes and enrichment of a partly oral bacterial flora, was associated with need of ICU admission independent of antibiotic use, dexamethasone use, chronic pulmonary disease, PO2/FiO2 ratio, C-reactive protein, neutrophil counts or creatinine levels (adjusted p < 0.001). The ICU-related dysbiosis index at baseline correlated with systemic inflammation and was associated with 60-day mortality in univariate analyses (Hazard ratio 3.70 [2.00-8.6], p < 0.001), as well as after separate adjustment for covariates. At the three-month follow-up, the dysbiosis index remained elevated in ICU patients compared with ward patients (adjusted p = 0.007). CONCLUSIONS: Although our data should be regarded as exploratory due to low number of clinical end points, they suggest that gut microbiota alterations during hospitalization could be related to poor prognosis after severe COVID-19. Larger studies of gut involvement during COVID-19 in relation to long-term clinical outcome are warranted. Trial registration NCT04381819 . Retrospectively registered May 11, 2020.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Cohort Studies , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Viral , SARS-CoV-2/genetics , Hospitalization
12.
Shock ; 58(4): 251-259, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36130401

ABSTRACT

ABSTRACT: Background: Biomarkers for early recognition of infection are warranted. The hypothesis of this study was that calprotectin, C-reactive protein (CRP), IL-6 and procalcitonin (PCT), alone or in combination, provide clinically useful information to the clinicians for early identification of infection in patients with possible sepsis in the emergency department (ED). Biomarker dynamics in the first week of hospitalization were explored. Methods: Adult patients in rapid response teams in the ED were included in a prospective observational study (n = 391). Patients who received antibiotics after biomarker availability were excluded. The ED clinician (EDC) decision whether to start antibiotics was registered. Calprotectin, CRP, IL-6, and PCT were analyzed in blood samples drawn within 15 min after ED arrival and in a subgroup for 1 week. Infection likelihood was evaluated post hoc . Results: In identifying patients with infection, CRP (area under the receiver operating characteristic curve [AUC], 0.913) and IL-6 (AUC, 0.895) were superior to calprotectin (AUC, 0.777) and PCT (AUC, 0.838). The best regression model predicting infections included EDC, CRP, and IL-6. Using optimal cutoff values, CRP and IL-6 in combination reached 95% positive and 90% negative predictive values for infection. The EDC undertreated or overtreated 65 of 391 patients (17%), and CRP and IL-6 optimal cutoff values could correct this in 32 of 65 patients (49%). Longitudinal samples revealed that IL-6 peaked in the ED, whereas CRP and PCT peaked later. Conclusion: C-reactive protein and IL-6 were superior to calprotectin and PCT for recognizing infection in patients with possible sepsis in the ED. Combining these two biomarkers with different dynamics improved recognition of infection and could aid clinical management in rapid response teams in the ED.


Subject(s)
Procalcitonin , Sepsis , Adult , Humans , C-Reactive Protein/metabolism , Interleukin-6 , Sepsis/diagnosis , Biomarkers , ROC Curve , Emergency Service, Hospital , Leukocyte L1 Antigen Complex , Anti-Bacterial Agents
13.
Infect Dis (Lond) ; 54(12): 918-923, 2022 12.
Article in English | MEDLINE | ID: mdl-35984738

ABSTRACT

BACKGROUND: The lungs are the organ most likely to sustain serious injury from coronavirus disease 2019 (COVID-19). However, the mechanisms for long-term complications are not clear. Patients with severe COVID-19 have shorter telomere lengths and higher levels of cellular senescence, and we hypothesized that circulating levels of the telomere-associated senescence markers chitotriosidase, ß-galactosidase, cathelicidin antimicrobial peptide and stathmin 1 (STMN1) were elevated in hospitalized COVID-19 patients compared to controls and could be associated with pulmonary sequelae following hospitalization. METHODS: Ninety-seven hospitalized patients with COVID-19 who underwent assessment for pulmonary sequelae at three-month follow-up were included in the study. ß-Galactosidase and chitotriosidase were analysed by fluorescence; stathmin 1 and cathelicidin antimicrobial peptide were analysed by enzyme immuno-assay in plasma samples from the acute phase and after three-months. In addition, the classical senescence markers cyclin-dependent kinase inhibitor 1A and 2A were analysed by enzyme immuno-assay in peripheral blood mononuclear cell lysate after three months. RESULTS: We found elevated plasma levels of the senescence markers chitotriosidase and stathmin 1 in patients three months after hospitalization with COVID-19, and these markers in addition to protein levels of cyclin-dependent kinase inhibitor 2A in cell lysate, were associated with pulmonary pathology. The elevated levels of these markers seem to reflect both age-dependent (chitotriosidase) and age-independent (stathmin 1, cyclin-dependent kinase inhibitor 2A) processes. CONCLUSIONS: We suggest that accelerated ageing or senescence could be important for long-term pulmonary complications of COVID-19, and our findings may be relevant for future research exploring the pathophysiology and management of these patients.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Stathmin , Leukocytes, Mononuclear/metabolism , Cellular Senescence/physiology , beta-Galactosidase/metabolism , Biomarkers , Disease Progression , Cyclin-Dependent Kinases
15.
J Infect Dis ; 226(12): 2150-2160, 2022 12 13.
Article in English | MEDLINE | ID: mdl-35876699

ABSTRACT

BACKGROUND: Immune dysregulation is a major factor in the development of severe coronavirus disease 2019 (COVID-19). The homeostatic chemokines CCL19 and CCL21 have been implicated as mediators of tissue inflammation, but data on their regulation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is limited. We thus investigated the levels of these chemokines in COVID-19 patients. METHODS: Serial blood samples were obtained from patients hospitalized with COVID-19 (n = 414). Circulating CCL19 and CCL21 levels during hospitalization and 3-month follow-up were analyzed. In vitro assays and analysis of RNAseq data from public repositories were performed to further explore possible regulatory mechanisms. RESULTS: A consistent increase in circulating levels of CCL19 and CCL21 was observed, with high levels correlating with disease severity measures, including respiratory failure, need for intensive care, and 60-day all-cause mortality. High levels of CCL21 at admission were associated with persisting impairment of pulmonary function at the 3-month follow-up. CONCLUSIONS: Our findings highlight CCL19 and CCL21 as markers of immune dysregulation in COVID-19. This may reflect aberrant regulation triggered by tissue inflammation, as observed in other chronic inflammatory and autoimmune conditions. Determination of the source and regulation of these chemokines and their effects on lung tissue is warranted to further clarify their role in COVID-19. CLINICAL TRIALS REGISTRATION: NCT04321616 and NCT04381819.


Subject(s)
COVID-19 , Humans , Chemokine CCL19 , Chemokine CCL21 , Chemokines , Inflammation , Patient Acuity , Receptors, CCR7 , SARS-CoV-2
16.
J Intern Med ; 291(6): 801-812, 2022 06.
Article in English | MEDLINE | ID: mdl-35212063

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) is primarily a respiratory infection, mounting evidence suggests that the gastrointestinal tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and are related to long-term respiratory dysfunction remains unknown. METHODS: Plasma was collected during hospital admission and after 3 months from the NOR-Solidarity trial (n = 181) and analyzed for markers of gut barrier dysfunction and inflammation. At the 3-month follow-up, pulmonary function was assessed by measuring the diffusing capacity of the lungs for carbon monoxide (DLCO ). Rectal swabs for gut microbiota analyses were collected (n = 97) and analyzed by sequencing the 16S rRNA gene. RESULTS: Gut microbiota diversity was reduced in COVID-19 patients with respiratory dysfunction, defined as DLCO below the lower limit of normal 3 months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced relative abundance of 20 bacterial taxa and increased abundance of five taxa, including Veillonella, potentially linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2 /fiO2 (P/F ratio) <26.6 kPa. LBP levels remained elevated during and after hospitalization and were associated with low-grade inflammation and respiratory dysfunction after 3 months. CONCLUSION: Respiratory dysfunction after COVID-19 is associated with altered gut microbiota and persistently elevated LBP levels. Our results should be regarded as hypothesis generating, pointing to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , COVID-19/complications , Clinical Trials as Topic , Humans , Inflammation , RNA, Ribosomal, 16S/genetics , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
17.
Platelets ; 33(4): 640-644, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35225150

ABSTRACT

Thromboembolic events are frequent and associated with poor outcome in severe COVID-19 disease. Anti-PF4/polyanion antibodies are related to heparin-induced thrombocytopenia (HIT) and thrombus formation, but data on these antibodies in unselected COVID-19 populations are scarce. We assessed the presence of anti-PF4/polyanion antibodies in prospectively collected serum from an unselected cohort of hospitalized COVID-19 patients and evaluated if elevated levels could give prognostic information on ICU admission and respiratory failure (RF), were associated with markers of inflammation, endothelial activation, platelet activation, coagulation and fibrosis and were associated with long-term pulmonary CT changes. Five out of 65 patients had anti-PF4/polyanion reactivity with OD ≥0.200. These patients had more severe disease as reflected by ICU admission without any evidence of HIT. They also had signs of enhanced inflammation and fibrinogenesis as reflected by elevated ferritin and osteopontin, respectively, during the first 10 days of hospitalization. Increased ferritin and osteopontin persisted in these patients at 3 months follow-up, concomitant with pulmonary CT pathology. Our finding shows that the presence of anti-PF4/polyanion antibodies in unselected hospitalized COVID-19 patients was not related to HIT, but was associated with disease severity, inflammation, and pulmonary pathology after 3 months.


Subject(s)
COVID-19 , Thrombocytopenia , Anticoagulants/adverse effects , Ferritins/adverse effects , Heparin/adverse effects , Humans , Inflammation , Osteopontin/adverse effects , Platelet Factor 4 , Severity of Illness Index , Thrombocytopenia/diagnosis
19.
Sci Rep ; 11(1): 23205, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853380

ABSTRACT

The association between pulmonary sequelae and markers of disease severity, as well as pro-fibrotic mediators, were studied in 108 patients 3 months after hospital admission for COVID-19. The COPD assessment test (CAT-score), spirometry, diffusion capacity of the lungs (DLCO), and chest-CT were performed at 23 Norwegian hospitals included in the NOR-SOLIDARITY trial, an open-labelled, randomised clinical trial, investigating the efficacy of remdesivir and hydroxychloroquine (HCQ). Thirty-eight percent had a CAT-score ≥ 10. DLCO was below the lower limit of normal in 29.6%. Ground-glass opacities were present in 39.8% on chest-CT, parenchymal bands were found in 41.7%. At admission, low pO2/FiO2 ratio, ICU treatment, high viral load, and low antibody levels, were predictors of a poorer pulmonary outcome after 3 months. High levels of matrix metalloproteinase (MMP)-9 during hospitalisation and at 3 months were associated with persistent CT-findings. Except for a negative effect of remdesivir on CAT-score, we found no effect of remdesivir or HCQ on long-term pulmonary outcomes. Three months after hospital admission for COVID-19, a high prevalence of respiratory symptoms, reduced DLCO, and persistent CT-findings was observed. Low pO2/FiO2 ratio, ICU-admission, high viral load, low antibody levels, and high levels of MMP-9 were associated with a worse pulmonary outcome.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , Hydroxychloroquine/adverse effects , Lung Diseases/pathology , Matrix Metalloproteinase 9/metabolism , SARS-CoV-2/drug effects , Viral Load , Adenosine Monophosphate/adverse effects , Aged , Alanine/adverse effects , Antibody Formation , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/virology , Female , Hospitalization , Humans , Lung Diseases/chemically induced , Lung Diseases/enzymology , Lung Diseases/virology , Male , Middle Aged , Severity of Illness Index
20.
Nat Commun ; 12(1): 6774, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34811370

ABSTRACT

Host-directed-therapy strategies are warranted to fight tuberculosis. Here we assess the safety and immunogenicity of adjunctive vaccination with the H56:IC31 candidate and cyclooxygenase-2-inhibitor treatment (etoricoxib) in pulmonary and extra-pulmonary tuberculosis patients in a randomized open-label phase I/II clinical trial (TBCOX2, NCT02503839). A total of 222 patients were screened, 51 enrolled and randomized; 13 in the etoricoxib-group, 14 in the H56:IC31-group, 12 in the etoricoxib+H56:IC31-group and 12 controls. Three Serious Adverse Events were reported in the etoricoxib-groups; two urticarial rash and one possible disease progression, no Serious Adverse Events were vaccine related. H56:IC31 induces robust expansion of antigen-specific T-cells analyzed by fluorospot and flow cytometry, and higher proportion of seroconversions. Etoricoxib reduced H56:IC31-induced T-cell responses. Here, we show the first clinical data that H56:IC31 vaccination is safe and immunogenic in tuberculosis patients, supporting further studies of H56:IC31 as a host-directed-therapy strategy. Although etoricoxib appears safe, our data do not support therapy with adjunctive cyclooxygenase-2-inhibitors.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacology , Tuberculosis Vaccines/immunology , Tuberculosis/drug therapy , Tuberculosis/immunology , Vaccination , Adolescent , Adult , Cyclooxygenase 2 , Etoricoxib , Female , Humans , Male , Middle Aged , Tuberculosis/prevention & control , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...